UNTERSUCHUNGEN ZUR REAKTIVITÄT VON METALL-*n*-KOMPLEXEN

VIIL π -CYCLOPENTADIENYL–EISEN–BIS(TRIPHENYLPHOSPHIT)-NONAMETHYLTETRASTANNAN---EIN ÜBERGANGSMETALLKOMPLEX MIT EINEM Sn₄-CLUSTER ALS LIGAND*

W. KLÄUI und H. WERNER Anorganisch-chemisches Institut der Universität Zürich (Schweiz) (Eingegangen den 9. Oktober 1972)

SUMMARY

The reaction of $[C_5H_5Fe(P(OPh)_3)_3]BF_4$ (II) with LiSn₄Me₉ in THF yields the complex $C_5H_5Fe[P(OPh)_3]_2Sn_4Me_9$ (III) in which the Sn(SnMe₃)₃ group is linked to the transition metal. ¹H and ¹³C NMR data confirm the proposed structure. Two new methods of preparation are described for the tetrastannane derivative LiSn₄Me₉.

ZUSAMMENFASSUNG

Bei der Umsetzung von $[C_5H_5Fe(P(OPh)_3)_3]BF_4$ (II) mit LiSn₄Me₉ in THF entsteht der Komplex $C_5H_5Fe[P(OPh)_3]_2Sn_4Me_9$ (III), in dem eine Sn(SnMe₃)₃-Gruppe an das Übergangsmetall gebunden ist. ¹H- und ¹³C-NMR-Spektren belegen den Strukturvorschlag. Es werden zwei neue Darstellungsmethoden für das Tetrastannan-Derivat LiSn₄Me₉ beschrieben.

EINLEITUNG

Wir beschäftigen uns seit einiger Zeit mit der Darstellung von Metall- π -Komplexen, die Liganden besitzen, welche in freier, d.h. nicht-komplexgebundener Form sigmatrope Umlagerungen eingehen. Durch diese Untersuchungen soll die Frage beantwortet werden, welchen Einfluss ein Übergangsmetall M (bzw. ein Molekülfragment ML_n) auf den Verlauf und die Geschwindigkeit einer solchen Reaktion hat.

Zu den Verbindungen, die als Ligandensysteme hierfür in Betracht kommen, gehören z.B. die Cyclopentadienderivate (Ia–Ic). NMR-Untersuchungen—in jüngster Zeit vor allem von Kisin *et al.*²—haben gezeigt, dass diese Diolefine eine ziemlich rasch verlaufende [1,5]-metallotrope Umlagerung eingehen, deren Geschwindigkeit in der Reihe (Ia) < (Ib) < (Ic) zunimmt. Setzt man nun z.B. (Ia) mit Fe₂(CO)₉ in

* Für VII. Mitteilung siehe Ref. 1.

Aether (analog zu der von Kochhar und Pettit³ beschriebenen Darstellung von C_5H_6 -Fe(CO)₃ aus Fe₂(CO)₉ und C_5H_6) um, so gelingt es tatsächlich, in geringer Ausbeute einen Komplex der Zusammensetzung ($C_5H_5SiMe_3$)Fe(CO)₃ zu isolieren⁴. Wie NMR-Messungen zeigen, liegt hier der Trimethylsilylcyclopentadien-Ligand allerdings ausschliesslich in der *endo*-Konfiguration vor. Aus der Temperaturunabhängigkeit des Spektrums kann man folgern, dass in dem Komplex eine metallotrope Umlagerung des substituierten Diens—offensichtlich aus sterischen Gründen—erheblich behindert ist.

Das in freier Form gegenüber (Ia) noch "beweglichere" (Ic) reagiert mit Fe₂-(CO)₉ nicht zu einem (Diolefin)Fe(CO)₃-Komplex. In dem erhaltenen Reaktionsgemisch konnten wir—in Übereinstimmung mit den kürzlich publizierten Ergebnissen von Abel *et al.*⁵—an CO-haltigen Verbindungen nur Fe(CO)₄(SnMe₃)₂⁶ und μ -(SnMe₂)₂[Fe(CO)₄]₂⁷ nachweisen, die in besserer Ausbeute z.B. aus Me₂SnPh₂ und Fe(CO)₅⁷ oder Me₃SnCl und Na₂Fe(CO)₄⁶ zugänglich sind. Ein prinzipiell anderer Weg zu Übergangsmetallkomplexen mit (Ic) als

Ein prinzipiell anderer Weg zu Übergangsmetallkomplexen mit (Ic) als Liganden bot sich in der Umsetzung einer kationischen Cyclopentadienyl-Metallverbindung mit LiSnMe₃ an.

$$[C_5H_5ML_n]^{\oplus} + LiSnMe_3 \rightarrow (C_5H_5SnMe_3)ML_n + Li^{\oplus}$$
(1)

Eine analoge nucleophile Addition mit H^{\oplus} hatte zwar nicht mit $[C_5H_5Fe-(CO)_3]^{\oplus}$ (Ref. 3, 8), jedoch mit dem entsprechenden Triphenylphosphit-Kation $[C_5H_5Fe(P(OPh)_3)_3]^{\oplus}$ zum Erfolg geführt⁹. Wir erhofften uns daher auf diesem Wege die Synthese eines Komplexes $(C_5H_5SnMe_3)Fe[P(OPh)_3]_3$, in dem der Cyclopentadien-Ligand einer sigmatropen Umlagerung unterliegen könnte. Über das Ergebnis dieser Versuche sei im folgenden berichtet.

DARSTELLUNG UND BILDUNGSMECHANISMUS VON $C_5H_5Fe[P(OPh)_3]_2Sn_4Me_9$

Die von Green und Whiteley erstmals beschriebene Verbindung $[C_5H_5Fe-(P(OPh)_3)_3]BF_4$ (II) kann nach einer, gegenüber der ursprünglichen Vorschrift⁹ etwas modifizierten Methode aus $C_5H_5Fe[P(OPh)_3]_2I$ (Ref. 10) in nahezu quantitativer Ausbeute erhalten werden. Die Umsetzung von (II) mit LiSnMe₃ in THF bei -78° führt zu einem dunkel gefärbten Reaktionsgemisch, aus dem sich nach Abtrennung der in grosser Menge vorhandenen, nicht näher charakterisierten Zersetzungsprodukte in sehr geringer Ausbeute (< 1%) ein gelber Feststoff isolieren lässt. Elementaranalysen und Molgewichtsbestimmungen belegen dafür nicht—wie zunächst vermutet—die Formel ($C_5H_5SnMe_3$)Fe[P(OPh)_3]_3 sondern die Zusammensetzung $C_5H_5Fe[P(OPh)_3]_2Sn_4Me_9$ (III). Die unter dem Mikroskop erkennbaren, nadelförmigen Kristalle sind nicht sublimierbar und zersetzen sich beim Erhitzen im Hochvakuum ab etwa 150°. Sie sind in Benzol oder Toluol gut, in gesättigten Kohlenwasserstoffen wie z.B. Hexan oder Pentan dagegen nur sehr wenig löslich. Beim Aufbewahren der Festsubstanz an Luft tritt langsam Oxydation ein.

Nach der Sicherstellung der Zusammensetzung von (III) galten unsere

weiteren Untersuchungen vor allem dem Ziel, den Bildungsmechanismus dieses neuartigen Komplexes zu klären. Es wäre denkbar, dass durch nucleophilen Angriff des Trimethylstannylanions am Metall und gleichzeitige Verdrängung eines Triphenylphosphit-Liganden primär die Verbindung $C_5H_5Fe[P(OPh)_3]_2SnMe_3$ entsteht (Gl. (2)), die dann in einer Reihe von Folgeschritten gemäss (3) zu (III) reagiert.

$$[C_{5}H_{5}FeP_{3}]BF_{4} + LiSnMe_{3} \rightarrow C_{5}H_{5}FeP_{2}SnMe_{3} + P + LiBF_{4}$$
(2)
(II)
$$C_{5}H_{5}FeP_{2}SnMe_{3} \xrightarrow{+LiSnMe_{3}} C_{5}H_{5}FeP_{2}Sn_{2}Me_{5} \xrightarrow{+LiSnMe_{3}} C_{5}H_{5}FeP_{2}Sn_{3}Me_{7} \xrightarrow{+LiSnMe_{3}} C_{5}H_{5}FeP_{2}Sn_{4}Me_{9}$$
(3)
$$\xrightarrow{+LiSnMe_{3}} C_{5}H_{5}FeP_{2}Sn_{4}Me_{9}$$
(III)
$$P = P(OPh)_{3}$$

Zur Bestätigung dieser Vorstellung wurde versucht, eine oder mehrere der postulierten Zwischenverbindungen $C_5H_5Fe[Fe[P(OPh)_3]_2X (X=SnMe_3, Sn_2Me_5)]$ etc.) NMR-spektroskopisch nachzuweisen. Dazu wurde unter sorgfältig gereinigtem Stickstoff zu einer Lösung von (II) in THF in kleinen Anteilen eine Lösung von LiSn-Me_3 in THF zugegeben und unmittelbar nach der Zugabe sofort ein NMR-Spektrum im Bereich der π - C_5H_5 - und CH_3-Protonen aufgenommen. Bereits nach Zugabe von wenig LiSnMe_3 (Verhältnis der integralen Intensitäten: $C_5H_5 \gg CH_3$) beobachtet man eine starke Verschlechterung der Signalauflösung, was offenbar auf die Bildung von Radikalen zurückzuführen ist. Wichtig ist ausserdem, dass das im Spektrum auftretende Methyl-Signal *nicht* von unumgesetztem LiSnMe_3 herrührt, sondern—wie Vergleichsmessungen zeigten—dem Hexamethyldistannan Sn_2Me_6 zuzuordnen ist. Bei weiterer Zugabe von LiSnMe_3 zu der THF-Lösung von (II) verbreitern sich die NMR-Signale sehr stark, so dass eine Charakterisierung einzelner Protonenarten nicht mehr möglich ist.

Lösungen von LiSnMe₃ in THF, die längere Zeit unter Stickstoff und ohne besonderen Schutz vor Lichteinwirkung aufbewahrt worden waren, ergaben bei der Umsetzung mit (II) wesentlich höhere Ausbeuten an (III) (Beispiel: 10%). Dies deutete darauf hin, dass sich in der Lösung der Organozinn-Verbindung bereits vor der Umsetzung mit (II) LiSn₄Me₉-Teilchen gebildet hatten, deren Reaktion mit (II) dann zu dem neuen Komplex (III) führten.

Die nächsten Versuche galten der Darstellung einer Lösung von LiSn₄Me₉ (frei von anderen Methylzinnderivaten) in THF. Wells und Brown¹¹ haben 1968 eine Verbindung der Zusammensetzung (Me₃Sn)₃SnLi·3THF beschrieben, die in geringer Menge bei der Zersetzung von THF-Lösungen von LiSnMe₃ im Vakuum entsteht. Es wurde die Vermutung geäussert, dass während dieser Zersetzung SnMe⁻₃-Radikale gebildet werden. Nähere Angaben über den Bildungsmechanismus fehlen jedoch. Es gelang den Autoren ausserdem nicht, z.B. durch Umsetzung von (Me₃Sn)₃-SnLi·3THF mit Br₂ oder Mn(CO)₅Br ein Derivat der sehr reaktiven Tetrastannan-Verbindung zu fassen¹¹.

Wie unsere eigenen Untersuchungen gezeigt haben, sind THF-Lösungen von reinem $LiSn_4Me_9$ ausgehend von Sn_2Me_6 und $LiSnMe_3$ bequem zugänglich. Die

Bildung von LiSn₄Me₉ kann dabei summarisch wie folgt formuliert werden:

$$3 \operatorname{Sn}_2 \operatorname{Me}_6 + 2 \operatorname{LiSnMe}_3 \xrightarrow{\operatorname{InF}} 2 \operatorname{LiSn}_4 \operatorname{Me}_9 + 3 \operatorname{C}_2 \operatorname{H}_6$$
(4)

Die Umsetzung von so dargestelltem $LiSn_4Me_9$ mit (II) in THF führt bei Raumtemperatur bereitwillig und in guter Ausbeute zu dem Komplex (III). Eine Entstehung von Zersetzungsprodukten oder anderen Fe-haltigen Verbindungen wird in diesem Fall nicht beobachtet.

Ein weiterer Weg zu LiSn₄Me₉ besteht in der Reaktion von LiSnMe₃ und Me₃SnCl gemäss Gl. (5):

 $5 \operatorname{LiSnMe}_3 + 3 \operatorname{Me}_3 \operatorname{SnCl} \xrightarrow{\text{THF}} 2 \operatorname{LiSn}_4 \operatorname{Me}_9 + 3 \operatorname{C}_2 \operatorname{H}_6 + 3 \operatorname{LiCl}$ (5)

Wahrscheinlich bildet sich hierbei intermediär Sn_2Me_6 , das dann mit LiSnMe₃ entsprechend Gl. (4) weiterreagiert.

Die abschliessende Frage, wie die Bildung des Komplexes (III) aus (II) und LiSnMe₃ in THF zu verstehen ist, kann auf Grund der zuletzt angeführten Ergebnisse über die Darstellung von LiSn₄Me₉ wie folgt beantwortet werden. Spektroskopisch reine, frisch bereitete Lösungen von LiSnMe₃ in THF reagieren nicht mit (II) zu (III), d.h. die Verbindung $C_5H_5Fe[P(OPh)_3]_2SnMe_3$ ist wahrscheinlich bei der Bildung von (III) aus (II) und LiSnMe₃ kein Zwischenprodukt. Es wäre möglich, dass sich infolge eines primären Einelektronentransfers von SnMe₃⁻ zu $[C_5H_5Fe(P(OPh)_3)_3]^+$ Trimethylstannyl-Radikale bilden, die dann zu Sn₂Me₆ dimerisieren. Da die Weiterreaktion von Sn₂Me₆ mit LiSnMe₃ zu LiSn₄Me₉ unter den gewählten Bedingungen sehr langsam verläuft, entsteht nur eine geringe Menge von (III); der Hauptanteil der kationischen bzw. radikalischen Fe-haltigen Species dürfte einer raschen Zersetzung unterliegen.

NMR-UNTERSUCHUNGEN

Bezüglich der Struktur des Komplexes $C_5H_5Fe[P(OPh)_3]_2Sn_4Me_9$ (III) interessiert vor allem die Frage, ob die Sn_4Me_9 -Gruppe eine geradkettige (A) oder eine verzweigte Anordnung (B) von Sn-Sn-Bindungen enthält. Die NMR-Spektren können hierzu eine Antwort geben. Im Rahmen der durchgeführten Messungen wurden auch die Spektren einiger anderer Monocyclopentadienyl-eisen-Komplexe aufgenommen (siehe Tabelle 1 und 2) und die erhaltenen Daten denen von (III) gegenübergestellt.

Das ¹H-NMR-Spektrum von (III) in C₆D₆ zeigt 3 Signale, die den Phenyl-, π -Cyclopentadienyl- und Methylprotonen zuzuordnen sind. Die Signalintensitäten verhalten sich wie 30/5/27. Die Methylprotonen geben ein einziges scharfes Singulett mit 2 Seitenbanden, die auf ¹H-C-^{117/119} Sn- und ¹H-C-Sn-^{117/119} Sn-Kopplung

TABELLE 1

CHEMISCHE VERSCHIEBUNG δ (ppm) I	DER ¹ I	I-NMI	R-SIGNA	LEVO	NEINIGE	NMONOCY	CLO-
PENTADIENYL-EISEN-KOMPLEXEN	UND	VON	Sn ₂ Me ₆	(INT.	TMS ALS	STANDARD)

Verbindung	Solvens	Ph	$C_{s}H_{s}$	Me
C,H,Fe(CO),I	C ₆ D ₆	<u></u>	4.02 s	
C,H,Fe(CO),1	CŠ,		4.95 s	
C _s H _s Fe(CO)[P(OPh) ₃]I	CS,	7.1 m	3.93 d	
C.H.FerP(OPh),],I	C ₆ D ₆	6.7–7.7 m	4.06 t	
C.H.Fe[P(OPh)]]1	ĊŠ,	7.1 m	3.75 t	
C,H,Fe[P(OPh)],Sn4Meg	$C_6 \tilde{D}_6$	6.9 m	4.38 t	0.56 s
[CsHsFe(P(OPh)3)]]BF4	CD ₃ COCD ₃	7.1 m	5.03 g	
Sn ₂ Me ₆	THF		1	0.30 s

TABELLE 2

 $^{1}\text{H}-^{31}\text{P}-$ UND $^{1}\text{H}-^{117/119}\text{Sn}-\text{KOPPLUNGSKONSTANTEN}$ J (Hz) VON EINIGEN MONOCYCLOPENTADIENYL-EISEN-KOMPLEXEN UND VON Sn_2Me_6

Verbindung	³ J(HCFeP)	$^{2}J(HCSn)$	³ J(HCSnSn)
C ₅ H ₅ Fe(CO)[P(OPh) ₃]I	0.7		
$C_{5}H_{5}Fe[P(OPh)_{3}]_{2}I$	1.3		
$C_5H_5Fe[P(OPh)_3]_2Sn_4Me_9$	1.35	40.5/42.0	8.1
$[C_5H_5Fe(P(OPh)_3)_3]BF_4$	1.6		
Sn ₂ Me ₆		46.2/48.3	15.9

zurückzuführen sind. Die Seitenbande von der ${}^{1}H-C{}^{-17/119}$ Sn-Kopplung hat eine Dublettstruktur, bedingt durch die beiden Sn-Isotope 117 Sn und 119 Sn. Die Tatsache, dass die Methylprotonen nur ein einziges Signal ergeben, lässt darauf schliessen, dass alle Methylgruppen äquivalent gebunden sind, d.h. die 4 Sn-Atome offensichtlich nicht in einer Kette sondern verzweigt (Cluster-förmig) angeordnet sind.

Das Protonensignal der π -C₅H₅-Gruppe ist durch Kopplung mit den beiden ³¹P-Atomen im Molekül—ganz analog wie bei dem Komplex C₅H₅Fe[P(OPh)₃]₂I —in ein Triplett aufgespalten; die Kopplungskonstante beträgt 1.35 Hz. Wie Tabelle 2 belegt, findet man ähnliche Kopplungskonstanten auch für die anderen angeführten Monocyclopentadienyl–eisen-triphenylphosphit-Komplexe.

Die ¹³C-NMR-Spektren von (III) (sowohl nicht-entkoppelt als auch Protonenrauschentkoppelt) stützen eindeutig einen Strukturvorschlag gemäss B. Im rauschentkoppelten Spektrum (siehe Fig. 1) beobachtet man ein scharfes Singulett für die 9 Methyl-Kohlenstoffatome, was bei einer geradkettigen Anordnung der Sn-Sn-Bindungen auf keinen Fall zu erwarten wäre. Weiterhin findet man ein Singulett für die 5 C-Atome des Cyclopentadienylrings sowie 4 Signale für die 4 Arten nichtäquivalenter Phenyl-C-Atome. Charakteristisch ist, dass von den Phenyl-C-Atomen nur das Atom C-1 eine Aufspaltung durch den ³¹P-Kern zeigt.

Im nicht-entkoppelten ¹³C-NMR-Spektrum von (III) ist das Signal der Methyl-C-Atome—wie erwartet—in ein Quartett mit ${}^{1}J({}^{13}C-{}^{1}H) = 125$ Hz aufgespalten. Die einzelnen Quartett-Linien sind durch nichtaufgelöste ${}^{3}J({}^{13}C-Sn-C-$

Fig. 1. ¹³C-NMR-Spektren von $C_5H_5Fe[P(OPh)_3]_2Sn_4Me_9$ (III) in CS_2 (oben: Protonen-rauschent-koppelt; unten: nicht-entkoppelt).

¹H)-Kopplungen stark verbreitert. Die entsprechende long-range-Kopplung wurde im SnMe₄ zu J=1.3 Hz bestimmt¹². Das Signal der Cyclopentadienyl-C-Atome erscheint als ein durch long-range-Kopplungen verbreitertes Dublett mit ¹J(¹³C-¹H) \approx 165 Hz. Die Phenyl-C-Atome C-2, C-3 und C-4 ergeben ebenfalls Dubletts, und zwar durch direkte ¹³C-¹H-Kopplung mit ¹J(¹³C-¹H) = 160-167 Hz. Je nach Stellung der C-Atome im Phenylring können diese Signale durch ¹³C-¹H-long-range-Kopplungen noch eine Dublett- oder Triplett-Feinstruktur aufweisen. Man beobachtet im übrigen hier—wie auch bei anderen aromatischen Systemen¹³⁻¹⁵—, dass die meta-Kopplung ³J(¹³C-C-C-1H) mit 6-8 Hz wesentlich grösser als die ortho-Kopplung ²J(¹³C-C-¹H) ist.

Das ¹³C-NMR-Spektrum von freiem Triphenylphosphit (siehe Fig. 2 und 3) zeigt im Bereich der Phenyl-C-Atome ein sehr ähnliches Bild wie das Spektrum von (III). Diese Aussage gilt sowohl für die Werte der chemischen Verschiebung als auch

Fig. 2. ¹³C-NMR-Spektrum von Triphenylphosphit in CS₂ (Protonen-rauschentkoppelt).

Fig. 3. ¹³C-NMR-Spektrum von Triphenylphosphit in CS₂ (gespreizt, nicht-entkoppelt).

für die ¹³C-¹H-Kopplungskonstanten. Im P(OPh)₃ zeigt interessanterweise das Kohlenstoffatom C-2 eine Kopplung mit dem Phosphor, nicht jedoch das Atom C-1 wie im Komplex (III). Da die Kopplungskonstanten ³J(¹³C-C-O-³¹P) = 5 Hz und ³J(¹³C-C-C-¹H) = 7 Hz von vergleichbarer Grösse sind, zeigt das C-2-Signal die Form zweier scheinbarer Quartetts im Abstand ¹J(¹³C-¹H) = 162 Hz. Tabelle 3 fasst die ¹³C-NMR-Daten der Verbindungen (III) und P(OPh)₃ noch einmal zusammen.

TABELLE 3

Verbindung	9		δ	$^{1}J(CH)$	$^{3}J(CCCH)$	$^{3}J(CCOP)$
(III)		CH ₃	-0.2	125		
		C₅H₅	80.3	165		
1.1	Phenyl	C-1	154.5			8
		C-2	124.3	167	7	
		C-3	131.7	160	6	
		C-4	126.6	163	8	
P(OPh),						
()5	Phenyl	C-1	153.9			
	-	C-2	123.1	162	7	5
		C-3	131.9	160	7	
		C-4	126.5	161	7	

CHEMISCHE VERSCHIEBUNG δ (in ppm, relativ zu TMS) DER ¹³C-NMR-SIGNALE VON C₅H₅-Fe[P(OPh)₃]₂Sn₄Me₉ (III) UND P(OPh)₃ SOWIE ¹³C-¹H- UND ¹³C-³¹P-KOPPLUNGSKONSTAN-TEN J(Hz)

EXPERIMENTELLER TEIL

Alle Arbeiten wurden unter Stickstoff und in N₂-gesättigten Lösungsmitteln durchgeführt. Das verwendete Me₃SnCl (puriss.) war ein Handelsprodukt der Fa. Fluka, das ohne weitere Reinigung eingesetzt wurde. Zur Aufnahme der ¹H-NMR-Spektren diente ein JEOL-C-60-HL, zur Aufnahme der ¹³C-NMR-Spektren ein Varian-XL-100 Gerät.

Darstellung von $[C_5H_5Fe(P(OPh)_3)_3]BF_4$ (II) [siehe auch Ref. 9]

Zu einer konzentrierten Lösung von 10 g (11.5 mMol) $C_5H_5Fe[P(OPh)_3]_2I^{10}$ in Benzol gibt man 3.1 g (16 mMol) AgBF₄ und 3.3 ml (12.5 mMol) Triphenylphosphit. Die entstehende Suspension wird bei Raumtemperatur 3 Stdn. intensiv gerührt und danach abfiltriert. Nach Waschen mit Benzol wird der Filterrückstand in Methylenchlorid gelöst und über eine Säule, die ca. 10 cm hoch mit Aktivkohle gefüllt ist, filtriert. Die erhaltene gelbe Lösung wird unter Rühren vorsichtig mit Diäthyläther versetzt. Es entsteht ein hellgelber Niederschlag von (II), der über eine G3-Fritte abfiltriert wird. Nach mehrmaligem Waschen mit Aether und längerem Trocknen am Hochvakuum erhält man ein voluminöses hellgelbes Produkt, das im ¹H-NMR-Spektrum noch die Signale von (C₂H₅)₂O zeigt. Aus den Signalintensitäten ist auf eine Zusammensetzung gemäss [C₅H₅Fe(P(OPh)_3)_3]BF₄ · 0.5 O(C₂H₅)₂ zu schliessen. Ausbeute 13.3 g (98% d.Th. bezogen auf eingesetztes C₅H₅Fe[P(OPh)_3]_2I).

Darstellung von LiSn₄Me₉ in THF

(a) 10 g (50 mMol) Me₃SnCl werden vorsichtig unter Eiskühlung zu 4 g (0.57 g-Atom) Li-Draht in 50 ml THF gegeben. Die Mischung wird zunächst 4 Stunden bei 0° und danach weitere 24 Stdn. bei Raumtemperatur gerührt. Es resultiert eine gelbgrüne klare Lösung, die von überschüssigem Li-Draht abdekantiert wird (siehe auch Ref. 16). 1.5 ml dieser Lösung, die 1 mMol LiSnMe₃ pro ml THF enthält, werden mit 0.75 g (2.25 mMol) Sn₂Me₆ intensiv verrührt. Die Mischung wird 48 Stdn. bei Raumtemperatur stehen gelassen und die erhaltene gelbe Lösung dann über eine G3-Fritte filtriert. Das NMR-Spektrum der THF-Lösung zeigt, dass keine Ausgangsverbindungen mehr vorhanden sind.

(b) 40 ml der Lösung von LiSnMe₃ in THF werden unter Eiskühlung langsam in eine intensiv gerührte Lösung von 4.8 g (24 mMol) Me₃SnCl in 50 ml THF zugetropft. Die Lösung wird unter Lichtabschluss bei Raumtemperatur einige Tage stehen gelassen und die einsetzende Bildung von LiSn₄Me₉ NMR-spektroskopisch verfolgt. Die erhaltene THF-Lösung von LiSn₄Me₉ wurde direkt weiterverwendet.

Darstellung von $C_5H_5Fe[P(OPh)_3]_2Sn_4Me_9$ (III)

1.4 g (1.15 mMol) $[C_5H_5Fe(P(OPh)_3)_3]BF_4 \cdot 0.5 O(C_2H_5)_2$ werden in 5 ml THF gelöst und unter Rühren tropfenweise mit einer Lösung von LiSn₄Me₉ in THF versetzt. Das Zutropfen wird beendet, wenn dünnschichtchromatographisch kein Ausgangskomplex mehr nachweisbar ist. Das Lösungsmittel wird am Vakuum abgezogen und der Rückstand in wenig Benzol gelöst. Die Benzol-Lösung (die als Aufschlämmung noch feinverteiltes LiBF₄ enthält) wird auf eine Säule gegeben und mit Benzol als Eluierungsmittel chromatographiert (Al₂O₃, basisch, Akt. stufe I). Während der Chromatographie findet eine erhebliche Zersetzung des gebildeten Komplexes (III) statt. Die erhaltene gelbe Benzol-Lösung wird am Vakuum zur Trockne gebracht und der Rückstand zweimal aus Pentan umkristallisiert. Ausbeute an Reinsubstanz 235 mg (15% d.Th. bezogen auf eingesetztes $[C_5H_5Fe(P(OPh)_3)_3]BF_4 \cdot 0.5$ O- $(C_2H_5)_2$). (Gef. : C, 44.32 ; H, 4.61 ; Fe, 4.07 ; P, 4.28 ; Sn, 35.43 ; Mol.-Gew. osmometrisch in Benzol, 1357. $C_{50}H_{62}FeO_6P_2Sn_4$: C, 44.43 ; H, 4.62 ; Fe, 4.13 ; P, 4.58 ; Sn, 35.13 %; Mol.-Gew, 1351.61).

DANK

Herrn Prof. Dr. W. von Philipsborn und Herrn cand. chem. G. Müller danken wir sehr herzlich für die Aufnahme und Diskussion der ¹³C-NMR-Spektren. Zu grossem Dank sind wir weiterhin Frau M. Wirz für sehr zuverlässige und geschickte experimentelle Mitarbeit verbunden. Der Schweizerische Nationalfonds unterstützte in grosszügiger Weise die vorliegenden Untersuchungen.

LITERATUR

- 1 A. Salzer, T. L. Court und H. Werner, J. Organometal. Chem., 54 (1973) 325.
- 2 A. V. Kisin, V. A. Korenevsky, N. M. Sergeyev und Yu. A. Ustynyuk, J. Organometal. Chem., 34 (1972) 93, und dort angegebene Literatur.
- 3 R. K. Kochhar und R. Pettit, J. Organometal. Chem., 6 (1966) 272.
- 4 W. Kläui und H. Werner, unveröffentlichte Ergebnisse.
- 5 E. W. Abel, S. A. Keppie, M. F. Lappert und S. Moorhouse, J. Organometal. Chem., 22 (1970) C31.
- 6 O. Kahn und M. Bigorgne, C. R. Acad. Sci., Paris, Sér. C, 261 (1965) 2483.
- 7 R. B. King und F. G. A. Stone, J. Amer. Chem. Soc., 82 (1960) 3833.
- 8 A. Davison, M. L. H. Green und G. Wilkinson, J. Chem. Soc., (1961) 3172.
- 9 M. L. H. Green und R. N. Whiteley, J. Chem. Soc. A, (1971) 1943.
- 10 A. N. Nesmeyanov, Yu. A. Chapovsky und Yu. A. Ustynyuk, Izv. Akad. Nauk USSR, Ser. Khim., (1966) 1871.

- 12 F. J. Weigert, M. Winokur und J. D. Roberts, J. Amer. Chem. Soc., 90 (1968) 1566.
- 13 F. J. Weigert und J. D. Roberts, J. Amer. Chem. Soc., 89 (1967) 2967.
- 14 K. Takahashi, T. Sone und K. Fujieda, J. Phys. Chem., 74 (1970) 2765.
- 15 A. R. Tarpley jr. und J. H. Goldstein, J. Mol. Spectrosc., 37 (1971) 432.
- 16 C. Tamborski, F. E. Ford und E. J. Soloski, J. Org. Chem., 28 (1963) 237.

¹¹ W. L. Wells und T. L. Brown, J. Organometal. Chem., 11 (1968) 271.